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2.24. Subsequence

A sequence { y,} is called a subsequence of the sequence {x,,} if there exis
sequence {ny} of positive mtegers such that -, <m<nm3<...and y;= X o
In other words, if we are given a sequence {x,} and a sequence n <n, <p,

positive intergers, we select the terms of {x,} corresponding to the sequence {ng
place them in the same order. This new obtained sequence is called a subseque

{xn}.

Method to construct a subsequence

L Df
} ang
Tice of

‘Step I. Find a strictly monotonic increasing sequence of pos_itive integers n, | nyny,.

e, m<m<m<

Step I Images x ,x_ ,x ... of m , m , s, .. under sequence {x,} are the
i By - :

elements of the subsequence {xn } ={ yn} .
> : _ 8 ‘

Examples.
() Let =2k, k=1,2,3,...

Now {nk} {2 4 6,..} is a strictly monotonic increasing sequence of positive
integers. IR i S

{x"k }: {x,,3={n, X4, X, ...} isa sub;e'quence of {xy}.

(if)yLet mp=2 k—1,k=1,2,3,...

Now {nk} {1, 3 5

...} is strictly monotonic increasihg sequence of positive
integers. » L : ‘

{x”k }: {ka_I} ={x1., %3, Xs., “-'.} is a subsequence of {xn}

(i) Let mg =i k=1,2,3,,.. " SR

Now {n} = {1, 4, 9,

| ..} is a strictly monotonic increasing sequence of positi*’
intergers. :

{x";lc }= {xkz }={n,x ,{ré » ++} is a subsequence of {x,}.
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k= 19253, san

1, 8 27,...} 1s ‘ L . ..
. 27,...} is a strictly monotonic increasing sequence of positive

Lot X = : : ' '
[ X, } = Uk"} {x1, X3, X27,...} is a subsequence of {xn}

ry sequence is a subsequence of itself.

_l\mtc-(”' Eve

Q) A 1’“‘ is a strictly increasing sequence of positive integers, therefore the
oeder 10 which the various terms of subsequence occur is the same as that in which they
i {he given sequence. ThUS {8,2,4,6,.. } is not a subsequence of
12345678 ) |

() The interval between two consecutive terms of a ‘subsequence is not always
{he same |

@ Ifxm € {x_,,}; then there exists an »; > m such that x _ belongs to the

1

qhsequence. |

(5) Any subsequence of sequence is itself a-sequence.
6) A sequence has an mﬁmte number of subsequences.

125, (i) If a sequence {x,} converges to /, then prove that’ every subsequence of {x:}

also converges to /:

(i) Ifasequence {xn} diverges to + oo, then provethat eversk subsequence of {xn}

also diverges to + .

(ii) 1If a sequence {Xn} diverges to — %, then prove that every subsequence of {xn}

also diverges to — .

Proof. (i) Since {xn} cenverges to ! | L |
given ¢ > 0, however small, there exists a positive int_eger m such tha.t. N
| X —1|<E Y n=m -

If n,=misa natural number, then for k= p,‘nk =Znp,zm

|xp—1| <€ V nzm ' | |

subsequence {xn } also converges to /.
k ° .

(ii) Since {x,,} diverges to + ®
given A > 0, however large, there exists a positive integer m such that
? i .

xp>A ¥ nzm
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x = A Ymzm

= subsequence {x"k } diverges to -+ oo,

(#if) Since {x,} diverges to -- oo . -
given A > 0, however large, there exists a positive integer m sucj at
xp<-A Y nzm
i ; ' ! e 2 Ny = M i
If n, = mis a natural number, then for £ = p, ny »
¥y <-AYm=zm
”k ‘ .

=  subsequence {x,'”‘f } diverges to — oo,

Note. The converse of the above theorem ls not true.
Examples. (/) Letx,= (- D'={-1,1,-1,1,-1, [’."'}
Two subsequences {- I, - |, — l,...} and {1, 1,

1, } converges to — 1 and |
respectively. But {x,} does not converge. .

. . |n? ,h IS even
(i) Let x,= _ .
0 ,nis odd

Now {x; ,} diverges to + o but {x,;} does not diverge to + .

2. fids
(iii) Let x, =J—-n »#risodd

0 ,nis even

Now {x;,_} diverges to — oo byt { %y,

} does not di;/erge to o,
2.26. Peak Point of Sequence

(Pbi. U. 2010)

{xn} if x" <-x"l V n>”"

A natural number s s called a peak point of the sequenée
Examples. (/) Every natural number js g peak point of the seéquence

{—1-} . In fact t-wery
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(i) Letxn =11 V1 € N. Then {x,} has no peak point. -
|n fact a strictly increasing sequence has no peak point

A sequence may
or of peak points.

| have no peak poi ; |
e : p point, finite. number of peak points or infinite

qumb :
2. prove that every sequence contains a monotone subsequence.

(GN.D.U. 2017)

proof. Three cases arise :

case I The sequence {xp} has an infinite number of peak points.
Let the peak points be n,, 1y, ny ..., such that
m<nm<n<.. |

: {Inl ’xné ,an , } i.e., {xnk } is a subsequence of {x,}
n, is a peak point and n, > n, o IR A /
x”z< xnl .= xn.l > xn:;

Again n, is a peak point and »; > n,

x <x ! = X >x!
ny o imy .. M

Proceediﬁg in this_wéy, we get,

X >Xx >_xn>...
nl 112 - 3.

> {x } is a monotenic decreasing subsequence of {x}.
.
3.

Case II. The Secjuencé {x,,} has afinite number of peak points.
Let m, , my, ms,. mp be the peak points of {x,}.

Let », be a natural number strictly greater than each of my , my, ..., mp

n, is not a peak point

er m, > n, such that X, 2 X
there exists a ¢ natural number n, > ny = *n,

¢ a peak point of {xn}

7 > m such that x 2> .
there exists a natural number 73 > n; that ny x"z

Again n, is nO

<p,<msuchthat x < x <x
Therefore we have O # Ra. . 3

.. his way, we get a monotonic increasing subsequence { x of {x,}..
Proceeding In th ’ g 17 9 : n, txn}
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Case 111. The sequence {x,} has no peak point.
1 is not a peak point of {x,}

there exists a natural number », > 1 = n, such that x,,z z.xnl

Again n;, is not a peak -point of {x,} ‘ '

= X

there exists a natural number »; > », such X, > "y

< x <X

Therefore we have n, < n, < n, such that *n, n, ny '

Proceeding in this way, we get a monotonic increasing subsequence {x : } of {xn}

Hence every sequence contains a monotone subsequence.
Cor. Bolzano-Weierstrass Theorem

Prove that every bounded sequence has a convergent subsequence.

. (Pbi. U. 2011)
Proof. Let {x,} be a bounded sequence. :

{xn} is a sequence, therefore {x,} has a monotone subsequence {x }
: v k

{x,} is.bounded, therefore {xn } is also bounded -
| k

[ every subsequence of a bounded sequence is bounded]

{xn } is a bounded monotone sequence
k
= {xn } is convergent
k

{xn} has a convergent subsequence {xn }
: k

Hence the result.

2.28. Subsequential Limit or Cluster Point of a Sequeﬁce

A real number / is called a subsequential limit or cluster point of the sequence {xn}
if there exists a sub-sequence of {x,} which converges to /. |

Note. (1) If a sequence {x,} converges to /, then / is the only cluster point of {x,}. This is
S0 as every subsequence of {x,,} converges to /. |
(2) Ifasequence has more than one cluster point, then it cannot be convergent.
(3) Ifasequence {x,} diverges to + %, then + oo

| | is the only cluster point of {xn}-
(4) Ifasequence {x,} diverges to — w, then —

% is the only cluster point of fxn}'
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(i) Consider the sequence {x,} where . =
- n

amples: 1 -
gramp e Then the sequence {x,}

- onverges to 0. Hence 0 is the only cluster point of {Jfr:}-

(i) Consider the sequence {in} where x, = (- 1)". The -eubsequence
L, - , -1, ...} converges to 1 and subsequence {1, 1, 1, ...} converges to 1
Therefore = 1 and 1 are two cluster | points of {x,}. |

. _ | n ,nisodd
(iif) Letxy = "
—n, nis even
SubSCquence {xl's X3 5, X5, -} divel‘ger's‘ to + 00 and -Subsequehce {xZ X4 15 Xg 4 } .
| giverges to — . Thus the sequence {x,} has cluster points as + e and — .
129, Prove that a real number / is a limit point of a set A iff there exists a sequence of
 distinct points of A converging to /. |
Proof. (i) Assume that {x,} is a sequence of distinct points of A’ converging to /.
every neighbourhood of / contains infinitely many points of {x,} which are
also points of A. Thus every nbd. of / contains infinitely many points of A, which in turn

- shows that / is the limit point of A.

(i) Assurne that / is a limit pomt of A o Bel ok
every nbd. of  contains infinitely many pomts of A

Vne N In= (1 —-1-, [ +l) contams mﬁmtely many pomts of A
n nJ

NnA and the choose X3 E I N Asuch that x; #x.

Choose x; € I}
hoose x; € Ik N A such that xi is different from

Proceeding in this way, wWe C

— e

R 5X5 5 wnng N s

[This is possible as Ik contams
} of distinct points of A such that x, € ln.

infi mtely many points of A]

we get a sequence {xn
Let m be any fixed positive integer

. _ Vn.zm,%s%;;an'd—%é_i_
x+_:;<x;.—;:andx——l-‘zx—‘—;:
(x,ln.,ﬁc+-:;*]c[x—-i—.,x+—lnﬂ

or 1,C Im Y nzm \

Y n=nmXn El, = xElnm

S 1 g
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1
= |xp=1l|< —=¢ V¥V nzm
.m

= Lt x,=1!

n— o

g 1
sequence {x,} converges to /.

2.30. Prove that a real number / is a cluster point of real sequence {x,} iff given
€ > 0, the interval (/ — €, / + £) contains infinitely many points of {x,}.

Proof. (/) Assume that / is a cluster point of {x,}
there exists subsequence {xn } of {x,} which cqnvergés to L
n, :

given ¢ > 0, there exists a natural number m such that

X, e(l—elte) Y mpz=m
k

In particular, xp € (I - €, | + ¢) for infinitely many n i.e., the interval (/ — ¢, [ + £)
contains infinitely many terms {x,}.

(ir) Assume that the interval (/ — ¢, / + ) contains infinitely many terms of {x,},
where £ > 0,

1 ) :
x, € [l ——~,I+l) for infinitely many », where —]- =g
_ 1 n/. . n

In particular we can find x, € (-1,1+1).
; _ i

. 1 1 . ¢ i :
Again [1 *5,1 +5J contains x, for infinitely many n, we can find », > n; such

that x, € [1—1,14-1).
% 2 2

Proceeding in this way, we can find natural numbers

n <m<mn;<..<ng<..such that

x E[l——l-,1+l)
Ny k k/ .

1 is a cluster point of ix,,}
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' at a sequence {x,} cor
Pr)"c the n} 1verges to a real number / 1ff {xn} is bounded and / is

|  cluster point of {xy}

he? |

. (,-) Assume that {x,}converges to /

pro0"
{xn} 18 bounded and / is the only cluster point of {x,,}

(i) Assume that {x,} is bounded and / is the only cluster pomt of {x,}.

(f possible, suppose that {x,} does not converge to /. -

there exists an & > 0, such that for m € N, there exists an n = m such that

In paﬁicular, there exists an integer n, such that X, & (I —,g‘, I+ £) on the basis of
' ] ey

qme argument, there exists an integer n, > n, such that x ¢ (l—¢, 1+
- 1. 1 i

} such that o

Proceeding in this way, we get a subsequence {xn
: , : k

v g(l-glte) ¥k
L .

Now {xp} isbounded = {xn } is also bounded
‘ k)

by - Bolzano-Weierstrass Theorem, {xn } has a convergent subéequence

| converging to a real number /' # / ol xp €08 1tE) for any ]

I is a cluster point of {x,}, which contradicts that / is the only cluster point of

-
our supposition is wrong
{xn} convergee to /.
Note. Similarly we can prove that {x»} diverges to + ® or — o ]ff+ o or — ® is the

| only cluster point of {x}.
232, (1) If a sequénce L} convergés to 1, then its subseQLlences {x2 v+ 1) and {x2 n}

also converge to /.

(i)  If the two sub-sequences {X2n+ 1} apd {x2,}ofa Sequence' {x,} converge to

t A e

he same limit /, then {x, } also converges to /.
P :

- "Toof : (i) Since {xp } converges to/

given & > 0, however small, there exists a positive integer m such that

kn—Il<e VY -nzm
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Now2n>mand2n+1>m
|xap—=1|<e ¥ n=m
and [xp+1-1/|<e ¥V n=2m
x2n+léndx2n+|+l |
subsequences {x ,} and {x; ,+ 1} converge to /.
(7)) Now {x ,} and {x3 ,+ 1} converge to /
x2p=2>landxy p4+ >/
given € > 0, 3 natural numbers m, and m; s.t.

|xap=1|<e ¥V n=m,

i)
ad Ix=ll<e Vonzm @
Two cases arise : ‘
Case 1. nis even
Let n=2k , ‘
| Xp=1|=|x25—1|<e V¥ k_‘z'm,‘ L o)
Now n=2k = n=22m
|xa—1|<e ¥ n=2m, ()
CaseIl. n is odd
Let n=2k+1 . L
(xn=1|=|mu+1-1]<¢ ¥ kzm, [ of @)}
Nown=2k+1 = nz22m,+1
| Xn—=1|<e ¥V nz=22m,+] ...(4)
Let m=rnaximum(2m,,2m2+l) |
from (3) and (4), we get, _ e
|xn—1|<eVnz=m | -

= xy~>lasn-> o

= {xn} convergesto ], .

2.33. Cauchy Sequence

A sequence {x,} is said to be a C

auchy sequence if given ¢ > 0, however small,
-3 a positive integer k (depending upon €)

such that
[Xn—xm|<e V¥ n,om =k

(G.N.D.U. 2008, 2013; P.U. 2010)

{xn} is said to be a Cauchy sequence if given & > 0;
rm (depending upon ¢) s.t.

" xnep—xn|<e ¥ nzm and pEN.

Another Def. A sequence
however small, 3 a positive intege
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4. prove thata Cauchy sequence js bounded I
34, K . (Pbi. U. 2010)
oof Let {x»} be Cauchy sequence.
given & > 0, there exists a positive integer p such that
| Xn —Xpm| <& v n,mz=p (1)
In particulal', | Xn—xp | <e VY n> p 2)
Now HM?H%—%N1AS|%—%Lq%y |
<et|x,| V n=p ' ' [~ of (2)] |

|xnl<e+|xp| VW nzp

Let M = max. {'xl | ’ l-xlla.-'-a.l'xp—-lly E+'|prl}

v x| =M VY n

{x,,} is bounded.

2.35. Prove that a convergent sequence is always a Cauchy sequence ;

(l:LElLZQDi_P U. 2007 ; GNDU 2008; Pbi. u. 2009)

' Proof. Let the sequence {x,} convergeto/ \
J

1

. givene >0, however small, 3 £ € Ns.t.

|x,,—1|<% Vonzk - ()}

Let m = k be a natural number. '

i ' _
; Jxm=ll< > ¥ mzk SRy | o)
NO\-N | Xpn—Xm | | =-I(xn“"l)+(‘l‘xm)'|’5_|xn"l|+|‘l“3.rm |
£ E [
 =pmt <SS [ of (1, @)

| x ._xm|<-8 V.n,r_n,Zk

{x,,} isa Cauchy sequence

T ; (HW Pbi. U.2011; GNDU 2012 2013)

Pr°°f Let {x,} be a Cauchy sequence.
il i

given ¢ > 0, there exists a positive integer p such that

| %~ xm|<E Y mmMEP - g = e

In particular, | x, —xp | <& Y 7ZP
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Now || = | Gn—=xp) +xp | = |on=% |+ xp] .
<e+|xp| v nzp ‘ ; [""9f(2)]
|xn|<e+|xp| ¥V nzp
LetM=max.{[x.|,|x2|,.'..,|xp_1|,s+|xp|}'

= {xp} is bounded.

)

Let {x } be convergent to /. We shall prove that {x,} also converges to /.
"k .

by Bolzano-Weierstrass Theorem, {x,} has a cOnver-gent subsequenc,e

Since x —/
F'a'k

given £ > 0, 3 a positive integer p s.t.

x: ~ll<e ‘N . k,=p ws(3)
"k . -
for n=p, n = ny ép, from (1), we Hav’e,‘ |
g | :
T [ <5 .8
|xp—1] = (x —x )+(x "—IJ = |x —-x |+]|x —l’
n n, n, R n, Ry
<SS Vonzp [ of 3), ()]

cient condition” for the convergence of a sequenct
chy.sequence,

- (GN.D.U. 201
Proof. Reproduce An-gand Art-3

Note : In the system of rationa
rational number.

{xn} of real numbers is that it is a Cau

0,2013,2015, 2016 ; H.P.U. 2013 ; P.U.2013)

Consider the sequence 14, 14], 1414, 1.41

converge to a rational number. J converges to 42
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or's Intersection Theorey
a
g, C .
) sre 1y = Lan, by be a se 0
Lot I} wher® ' ' auence of the clogeq intervals such that

' w1 Gl vV on
(!

i I (1g) = bn = n = 0asn - o, (hey Ja \mique point ¢ such that

¢ € In ¥ 1 1 (In) denotes the length of the interyg I (G.N.D.U.2011)
i 00[- Since I+ 1 Cly Vn
proof :

apn S an+ | Sby+1Sh, ¥ i
| MEASABS .S Sy S, (D
hyzbyzbz ... 2by2byy 2., : @)
.. sequence {ay} is monotonically increasing and is bounded above as a, < b,V #
{ay} is convergent.
Also {bn} is monotonically decreasing and is bounded below as by>a, Y n.
{bp} 18 éonvcrgent
Let ay=>a,b,=>p3
by = (bp.—ay) + a,

Lt b = Lt (b —a)+ Lt a

o ey n—o®
= f=0+a = a=p=c (say)
Now ¢ is L.u.b. of {a,} and g.Lb. of {bn}

ap<c=<b, V n
> e E [ay byl Y n
= cel, Y n

To show that c is unique

' + which belong to
If possible, suppose that there exists tWo real numbers ¢ a-nd ¢' whic g

Ly, .
bu=ayz |c=c'| ¥ n
n= |[c—¢C I |
1 i ntradi t b,—an—=>0
{by— a,} cannot converge to Zero which contradicts that by = an
n
Our supposition is wrong
| R is un- | |
b o ; vals® or ‘Nested
. h% e th és «Cantor's Theorem on Nested Inre:_
e P— own '
Crug) "operp t?m is also kn
2
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A
ce Ty
: Sequen
2.39. Limit Superior and Limit Inferior of a deq

s contains a monotone su
We know that a sequence of real numbers a:::?’w o e T IR denot:eq
| verges .
and a monotone sequence converges or diverge

S tuan'cQ
: g

1 limits), including + © and — oo of sen
of all the cluster points (i.c., subsequential limits),

E is non-empty Yeng,
tie, b 1snon- '
{xn} of real numbers, then E has at least one elemen

: is called the /im; .
() The Lu.b of E in the extended real number system IS Catled e limit g, or g,

s ) Lt supx, or Lt xn.O[' Lt su
upper limit of {x,} and is denoted by "_L:w %n O n— o Px,

(if) The g.L.b of E in the extended real number system is called the Jimig inferi,

o
- inf.x, or Lt x, or [4;
lower limit of {x»} and is denoted by Lt x, or "_I;tw " 2 v Linf, X,
n—0

Examples. (/) Let x,= (- 1)"
{xn} has only two cluster points — 1 and |
E={-1,1}
Lt xp=1, Lt x,=—1
(#7) Let {x,} converge to /. Then every subsequende of {x,} converges to /.
E={i}
Lt =1 Lt x,= [
(iii) Let x, = { g el
=N , niseven

E',={—co,oo}

Lrt xn=°°,L£xn=.—°°
Properties of Limit ‘Superior

For a bounded sequence {xn} Lt x, =

=

\

u iff for every ¢ > 0,
(1) there exists a natural number m .

such that n<ute¥nz=m,
(i)  xp>u—efor infinitely many values of ;.

Properties of Limit Inferior

For a bounded sequence {x,) = Liff for every ¢ > ¢
(1) - there exists a natura] number n; sych that x,, > eEVn> -
€ Vnzm,

(i) xp<I+efor inﬁnitely many valyes of n
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el prove that the sequence {an} where a,,'-: g+ L
| find ts Jirm i
re an +-——3-, .am=8_+__.T
| H? n - m’

without 10sS of generality, we take 1> m.

ot ¢ > 0, however small. Then: | a, —a,,| <¢

1 -
i 8+— |—| 8+—
it [ -H3J ( m3}

<e

e, if m>
£

)5
1
113

Let p be any positive integer just greater than [;]

|an—am|<sVn,m_I2P

{an} is a cauchy sequence

is convergent.
very CaUChy sequence

“{an} is convergent as € - :
_ ) ne
1) _ g+ Lt [——] ~3+[
Now Lt q L [8+—3-'] "nl_;tw n—>o \I
nsw " . psyoo n /.

- L llsequence] ‘
- q .. J—3isanu
_8+9[' {"} »

=8

sequence {a,} converges t0 8 e

~

is a Cauchy sequence.and

(P.U. 2009)

3

l]

Lt —
n—>o N
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Example 2. Prove that is a cauchy sequer™
n +1 ( |
G.N.D
3
s m
"ol m” +1 |
er small.
Without loss of generality, we take n > 1. Let £ > 0. howev . Then
| a - a, | <&
3 3
if n___m i
P+l md 4l
I ¢
n 41 m” +1

ie. lf 1 — I <g

m+1 n 4l

1 ] n>nm = 5 s w3

i.e. lf —_ <g 3 3 1 - 1

m>+1 nd+1 = n+l>m+1l = —>

' m=+1. n” +1]

Ie. lf 31 < ] +e

m- +1 n +1
e if  —L1 .,

m> +1
ie if mdi1> 1

£
]

e if

Let p be any positive integer just greater than [ ]

[0"-0”,'(3 v h,mzp

= {4, }isacauchy sequence

. =

£

!
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3. Brove direstly thatthe following sequences are (g
' auchy sequences :

| 1 . 1 '
() {??} | . {;7} (i) {(‘”"}
- : n
n | [n4 |
(i) {;ﬁ} W {T}

1 |
1 Here an = _ '.' a’" = —
(i) " m

Sol-
without loss of generality, we take n>m. :

Let € > 0, however small. Then |a, —a, | <e

1 }_

n m

<&

if

1 -1 : :
je if ——— <€ E - . [‘.‘n>m =>-1—'>-I—:|
m n _ ,

R B
je, if —<—+E¢€
m n

L |
ie, if — <e
m

o ge 1
e, it m> —
: &

| Let p be any positive integer just greater than -

-

‘an_a.rn_l<€ Y nm=2p
| =3 . i .
| {a,} is a cauchy sequence. -

| : i
i e 1 _ l i
| (i) Here a, = — S TR

f n = M
Without loss of generality, we take g

— dam <. €

Lete > 0, however sﬁall. Then | an

m-
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Le., if m> [-1—)2
£
' i\2

Let p be any positive integer just greater than (;]

|an—am|<e VY nm=p
=  {a,} is a Cauchy sequence.
(_ l)" (_ 1)"1

(iif) Here ap = s B a, = -

Without loss of generality, we take n > m. ' _
. nl _nym
D" D" 2 ‘(—1) ‘+ (=1

n m

| an—am |

n : m

: 1
“on>m :>—-<i
[ ' nom

&

L 1,1
m m m

_ 2
m .
- Lete >0, however small. Then |a,—ay,|<t

LR
m

Le., if m> —

Let p be any positive integer just greater than -2—
£

|an—am| <€ Ynm =2p
= {an} is a Cauchy sequence.
m

. n
(iv) Here ap=——, g =—"_
, n+l M omy

Without loss of generality, we take 1> -

jan=am = VY
ntl - mil n+l mH )  ma ] ptd

1
m'+l n+| , [ n>m = 11>-“"]
m+



rfrﬂurwcﬁs ' i, ' I
m E

et &
L | i
if S —
m+1 n+l
I - .
i = 7S +8 B
€ m+1 n+l

| P
if — <€
m+ 1

1
. fmtl> —
1.Coo £

if m> : ]
: irom = B
ie. 5

Let p be any positive integer ju:;t greater than 1 1.
= it ' g

lap—am|<€ Y nm=p
» {ay} is a Cauchy sequence.
: n+l m+1

(vy Hereap=——, . a,= .
n m m s

" Without loss of generality, we take n>m

el oom+t] b 1 1 1
| ap—am| = =l 1+=] =1+ [T |
n m n ) m . n m o~
— _]_.__l_ .- 2 '['l' n}m : l< ,_l_i|'
n m

m n - N
Let ¢ > 0, however small. Then |
|ap—am| <€
1

H —<E
m n e

N P
l'e'p lf _—<—+E : .
m n

s 8 0
"e') lf _ < £
m

f.e_l if m > l . 3 _
£ i \

: |
Let p be any positive integer just greater than —-

lay—ay|<e Yn,mZP
=

{a,} is a Cauchy sequence. : \



252 I w
= l Cauchy sequences -
Example 4. Prove that the following sequences are not L-auchy |
: 2
iy Gl
@ {-1"} Gi) {(=1)"n} (iiiy {n’}
Sol. (/) Here Xp =(= 1)"

2n+l_ _
Jl‘2w=(—1)2n'=l,xzn+|=(—l) l
Let E=1]1 ‘

NOW [x2 p4 1 —xpp|=|=1=1|=|=2|=2>1=¢Vn
{xn} is not a Cauchy sequence |
(i) Herex, =(-1)"n
| 0= @m=2nx 001 =(- 12" @n+D=-@n+1)
Let e=] | | |
N°W|1?2-n+l—x2nl=|—2n—1—2n|%|—(4n+1)_|=4n+1>1_—.3 Y n
{xn} is not a Cauchy sequence.
(iii) Here x, = 17, '

" x,;+,=(-n+l)2=n2+2n+l
Let ¢=1

|x,,-+_1_x,,|=|n2+2n+1—n2|‘=|2n'+1|=2n+1> 1.

=8'Vn

{xn} isnot a Cauchy sequence.

mple 5. - Show that the Séquence {a,} where a,

= 1+l+’-!-+...+,-1- does ol
2 .

: 3 n
converge, by showing that it is not a Cau,chy_ sequence, .
(HPU.2011; 6Ny, 2016 ; P.U. 2018)
1 1 1 .
Sol. a,,=l+5+—-+...+ —
n

a =]+—l-+l+ +I

m - H
Without any loss of generality, we take 1, > i, ,//
lam—an| = ] g Ao
n+l  p4 m
P
orﬁ'a—'a|=——]-_+[ : l .
: mo e nip Tt —

m



_ ] 1 1
el w2,
1 1 1
2 — . b —
2n 2n +2n
E ”+15n+n,n+2ISn+n,..‘:,-n+nSn+n'
1 2 1 1 > l . 1 ->_ 1 ’/"J‘r
n+l nen'n+2 ntn nen ninjl_
= i L
n 1 : ‘ .
=__:_Vn 2
2" 2 a ‘\:\'
| e

{ay} 1s not Cauchy sequence

{ay} does noL-eoNverge.

1 1 1 .
=1+ -—+-5—+...+————.‘ is not

5w that the sequence {dn} where ap —
vy 2n—-1
| convergient. Prove that {ay,} diverges to . (P.U. 2017)
Sol. ay = 1 + .!-+.!.+___+___l._-
g 5 '\ 2n—1l
] 1
u,"_': l"‘"—+-"+.;.+—'—-_—.
3 23 2m-1
Let m>n
am"‘.anl"‘ T+l 2}#}' Tm—1 |
1 1 1
= __.._——-+-—-—-—'—+ +—
on+l 2n+3 2m-1
Take m=2n+1 '
1 | +..
LA Ansl Antl 4n+1

i02n+1—an|= '—’n+l+2n+3 e
_ n+l :_}_( +___'.3_.-J> Lyn
" An+l. 4 CAn+l ; _4- _

S | . ;
la,} is not a Cauchy sequence.

=

e {a ' t < & £
| nj is not convergen _ | |
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I f—

Also a,,+|~—l+3+5+ m 2n+l
| n
l’-"*"Jra'-H":;'n=2’“_]>0 ¥
= an+1 >ayV¥n

{an} is monotonically increasing. N
onverge
ow {ap} is monototlcally increasing and not ¢ g

{an} diverges to .

1 -1 I
- = ——t =t p—
7. Show that the sequence {an} Where ap = =+7r% ¢ 2n does p,,

erge, by §howing that it is not a Cauchy sequence. Prove that {a,} diverges to ®;

(H.P.U. 2006, 2009: G.N.D.U. 2006; P.y, 3,
1 | SRR R . -

1 1
= —_—_—t—at—t . 4+ —
Sol. an 2+4+-6+ P
=]+l+l+ +L
™ T 2m
Let m>n
v, I +1=1#+lv++__
4=t 2n+2 2n+d 2m| 2n+2 2n+4 7 2m
Take m=2n
I iy 1
|-92n‘an|_

= + +i+—
. 2n+2 2n+4 7T 4y

1 ] 1 l ] 1 ‘
= + +..t > —4 ot —
- 2n+2 2n+4 2n+2n  4p 4n-+4n-.{- 4n

- {an} is not a Cauchy sequence

= {an} is not convergent, _
I 1 A

Also An+1~ —+—4—4 . e—— r
2 4 2n 2n42

ol

{

An+ | —an=

2n+2 >0¥n

4n+1>ap¥n
= {ap} is monotonically j mcreasmg

Y Now {ay} is monotomca]ly mcreasmg but not

convergent,
{an} diverges to o,

——
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Cauchy’s G
; y's Leneral Principle of copvergence to show that {a,} where
/ |+,_...+ 7 i +—2 converges

(H.P.U.2012, 2015 ; G.N.D.U. 2012, 2013, 2018 ;

(_’_/ .
| , P.U. 2010, 2013)
1 1.
l+—=+—+..+—
Her€ tn 22 32 2
am=1+—+—+ +—-—l
* L iad v R m?
Let n=m
' 3R 1 1 T 1
|an"am| = ~+...+ = + B, it
L A2 , o
(m+1)*  (m+2) | m+D? (m+2)2 A’

S T i
S mmel)  (maDme2) T mmDn

_ (m'+1)—m+(m+2)—(m+|)+  n=(n-D)
m(m+1) (m-l-l)(m+2) o (n=Dn

(e ) e AR

L

s

m. n y
1 Y 1 . 1
lap—ay | = — < gif — <e e, if m>—
m m S
- ; ‘)--—’-—-"—\ e

"\.-d"f 1
Letp be a posmve mteger just greater t than 3

e
-

| an am|<£Vn,m p

]

« {ap}isa Cauchy sequcnce

- by Cauchy General Prmcnple of convergence {an} is convergent. /
EXamp,e 9. Let {u,} be a sequence of posmve real numbers such that
l
Upy | = _;? (up + up1) V¥ 1 =2. Then prove that {u,} converges to 3 (u, + 2 uy).

_ (G.N.D.U. 2011)
So),

e 1
re Un+ | =.E’ (un"'uh-—l)
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First of all, we will prove tiat {#,} 15 @ Cauciiy
- U
u U _z_lf;'_____’i.
n - =
Ill”-}- 1 —U,-,-l B _"_E_'__— u?f 2
: |
| tp 4+ 1 —uy| = S | 2y — tp — |
Changing nton -1, n-2,..., 2, we get, '
Iun—ll,,_1‘|= E- | up -1 —’411—2|
1
| g1 —up_2|= E |u,,-2—Hn—3|
- 1
|u3—“z|:; | uy —uy |
Multiplying these equations, we get
| Un 1 —un | = o] | =y | 1)
for n = m,
| up—wupy | = | (up — uy - )+ (”n.—.l',.— Up-2) +..+ (Um + 1 — Upm) |
s |uﬂ‘_un‘]|+|un——l_un—-2|+:-:.+|um+1—u”g|
*( e ol . ' |
- .-'+ — . L
-2 Jn=3 S qu ulj [~ of ()]
|u, —u +._1_' I
2 1 | -] o +——-——m+l o0
1
N 2.m—l ‘ 4
"l-— © |-r
2
= luy—u . *-—]——
om-2
‘uflr“‘um|< : ’u -
om-2 172 U | VH?_m

Given ¢ > 0, we can choose g positive integer P such that

1
2m—2

| uy— Uy |<eg vy ",map



0 ‘
SIS .
/'{:‘; 1sa Cauchy sequence

" {uy) is convergent.

Let Lt =l

n—>®
1
Also ] = -:-2- (u,, + Up— 1)
putting 7 =234 n—1, we get,
i- .

Uz = '_2- (Nz +u1)

4 2 3 2

A

Us =5 (g + u3)

1
Un=1 """ (%1—2 +u,_3)

o

uﬂ = -2_ (ﬁn_-— | + un —'2)

Adding these equations, we get, up + 5 =177 (u +2u,
Taking lirhits as n — o, we get

1
/+11:_(ul+2u2)
3" 2
-~ tH l L i
1 = e
= j! —2—(u +2u,) = [ 3(H|+21¢2)

| '
{u,} converges to = (u, +2 uz)

: iti such that
Another Form : Let {x_} beasequence of positive real numbers suc
n

X. "=

: v nz3 Prove that { x"-} is a cauchy sequence and
it +x n=2. ‘
"2 (xn—l _'ln-—Z) !

(P.U. 2008)

2 I { n} ed not be a
f{x ' : Cauchy sequences, then {x, N€
ch el I { 2n} and {x ,-,-+|} areboth .
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Now x3,=(-1)?"=1 ¥ neEN | .o

{x2n} is a constant sequence

= {x24} is a convergent sequence

= {x2n} is a cauchy sequence.

Also xypey=(-1)*""'=_1 V neN.

{x2+1} is a constant sequence

= {x2n+1} is a convergent sequence.

= {x2n+1} is a Cauchy sequence.

But {x,} is not a Cauchy sequence (Proye it
Example 11. If the sequences {xn} and { yn} are convergent, then show b}f Caughy
General Principle of convergence that ) | R

(D) {xn+yn}. . (i) {xn yn} are also convergent.

(P.U, 2016)
Sol. Lete >0 be given |

{xn} is convergent '
{xn} is a Cauchy sequence |
3 positive integer p, such that

g _ ’
| Xn — X | < ‘2‘ v n,mz=p,

Again as { y,} is convergent
{ yn} is a Cauchy sequence

there exists positive integer p, such that

& i =
|J’n")"m|_<5 v n,mz=p,

Letp =. max1mum (p] ,pz)
(1) and (2) hold ¥ namzp.

)] | (xn *+yn) — (X +ym) = | (xn —Xm) + G’n ~¥Ym) |

s[xn-xm|+|yn_yml

£ £
<'_--i"-----:‘:
2 9 ¢
| Gon+m) = Gom + y) | <y T,

p

> fx,+ Yn}isa Cauchy S€quence apg hence Convergent
_ . n
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i gince {xn} and { yn} are both convergent
o y and { yn} are both bounded
there €Xist positive real numbers g and b such that
| x%n | <@ [yn|<b¥n | | ..(3)
ow | Xn Yn —XmYm|= | x,,':i;n ~XnYmtXnYm—XmYm|
= xn O — Ym) + Y Gon = %m) |
< | %0 On=ym) | | ym Gn—5m)|
= |x.;1| |9€'n=-“J’m..| H.'J’m| |Ix.n'xm| o |
e i;:_ +b_§ | [ Ofm,]
=(a+ b).'-g- v '”,_”i zp

’]xn yn——xmly"n| < (2

> {xnyni!

——

a+b] e¥n,mZp

. ‘ ' rgent.
s Cauchy sequence and hence conve _g.



