Ramsaday College, Amta (Howrah)

Subject: Theory of equation, Inequality, Integers

Mathematics Class Test 2018

Full Marks: 30, Time: 60 minutes

Date: 20/03/2018

Answer the following questions.

- **1.** The equation x^n -nqx +(n-1)r=0 will have a pair of equal roots if (i) $q^{n-1} = r^n$ (ii) q^n +(-1)ⁿ $r^{n-1} = 0.$ (iii) $q^n = r^{n-1}.$ (iv) $q^{n-1} = r^{n-2}.$
- **2.** What is the relation between q and r in order that $x^3 + qx + r = 0$ may be put in the form $x^4 = (x^2 + ax + b)^2$? (i) $8q^2 + r^3 = 0$ (ii) $8q^3 + r^2 = 0$ (iii) $8r^2 + q^3 = 0$ (iv) $q^3 = 8r^2$.
- **3.** If α be a multiple root of order 3 of the equation $x^4 + bx^2 + cx + d = 0, (d \neq 0)$ then α is equal to (i) $\frac{8b}{3c}$ (ii) $-\frac{8d}{3c}$ (iii) $-\frac{8c}{3d}$ (iv) $\frac{8d}{3c}$.
- **4.** If one of the roots of the equation $x^3 + ax^2 + bx + c = 0$ equals the sum of the other two ,then (i) $a^3 + 8c 8ab = 0$ (ii) $a^3 + 8c 4ab = 0$ (iii) $a^3 8c 4ab = 0$ (iv) none.
- **5.** If an integer m is a multiple root of order p of the equation $x^5-5x^3+5x^2-1=0$, then (i) p=5 (ii) p=2 (iii) p=3 (iv) p=4.
- **6.** The unit digit in 7⁹⁹ is (i) 2.(ii) 3 (iii) 1 (iv) 4.
- **7.** The last two digit in 33¹⁰⁰ is (i) 10 (ii) 11 (iii)01 (iv)61.
- Two integers u and v satisfying 54u+24v =30 is (i)u=5,v=-10 (ii) u=-10, v=5 (iii)u=-5,v=10 (iv) u=7, v=10.
- 9. The remainder when 1! + 2! +3! +.....+50! Is divided by 15 is (i) 3 (ii) 4 (iii)5 (iv) 6.
- **10.** The least positive residue in 2^{41} (mod23) is (i) 2 (ii) 3 (iii) 4 (iv) 5.
- **11.** If a ,b are positive and a+b=4 then $(a + \frac{1}{a})^2 + (b + \frac{1}{b})^2 \ge (i)\frac{17}{2}(ii)\frac{25}{2}(iii)\frac{49}{4}(iv)\frac{9}{2}$.
- **12.** If x> 0 and a is known positive numbers , then the least value of ax $+\frac{a}{2x}$ is (i)a (ii) $\frac{a}{\sqrt{2}}$ (iii) $\sqrt{2}$ a(iv) a^2
- **13.** Let x_1, x_2, \dots, x_n be n positive numbers such that $x_1, x_2, \dots, x_n = 1$, then $x_1 + x_2 + \dots + x_n$ is (i)>n+ $\frac{1}{n}$ (ii)<n+ $\frac{1}{n}$ (iii)>1 + $\frac{1}{n}$ (iv) none.
- **14.** If a+b+c=0(a,b,c>0) then ab+bc+ca (i) <0 (ii) >0(iii) ≥ 1 (iv) none.
- **15.** The maximum value of $(4 x)^3 (2 + x)^6$ is (i) 2^9 (ii) 2^{16} (iii) 2^{15} (iii) 2^{12} .